# Matrix of Minors Calculator

The calculator will find the matrix of minors of the given square matrix, with steps shown.

Related calculator: Cofactor Matrix Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find the matrix of minors of $$\left[\begin{array}{ccc}1 & 2 & 3\\4 & 6 & 7\\7 & 8 & 9\end{array}\right]$$$. ## Solution The matrix of minors consists of all minors of the given matrix. Minor $$M_{ij}$$$ is the determinant of the submatrix formed by deleting row $$i$$$and column $$j$$$ from the given matrix.

Calculate all minors:

$$M_{11} = \left|\begin{array}{cc}6 & 7\\8 & 9\end{array}\right| = -2$$$(for steps, see determinant calculator). $$M_{12} = \left|\begin{array}{cc}4 & 7\\7 & 9\end{array}\right| = -13$$$ (for steps, see determinant calculator).

$$M_{13} = \left|\begin{array}{cc}4 & 6\\7 & 8\end{array}\right| = -10$$$(for steps, see determinant calculator). $$M_{21} = \left|\begin{array}{cc}2 & 3\\8 & 9\end{array}\right| = -6$$$ (for steps, see determinant calculator).

$$M_{22} = \left|\begin{array}{cc}1 & 3\\7 & 9\end{array}\right| = -12$$$(for steps, see determinant calculator). $$M_{23} = \left|\begin{array}{cc}1 & 2\\7 & 8\end{array}\right| = -6$$$ (for steps, see determinant calculator).

$$M_{31} = \left|\begin{array}{cc}2 & 3\\6 & 7\end{array}\right| = -4$$$(for steps, see determinant calculator). $$M_{32} = \left|\begin{array}{cc}1 & 3\\4 & 7\end{array}\right| = -5$$$ (for steps, see determinant calculator).

$$M_{33} = \left|\begin{array}{cc}1 & 2\\4 & 6\end{array}\right| = -2$$$(for steps, see determinant calculator). Thus, the matrix of minors is $$\left[\begin{array}{ccc}-2 & -13 & -10\\-6 & -12 & -6\\-4 & -5 & -2\end{array}\right]$$$.

The matrix of minors is $$\left[\begin{array}{ccc}-2 & -13 & -10\\-6 & -12 & -6\\-4 & -5 & -2\end{array}\right]$$\$A.