Integral of $$$x^{2} y^{2} z^{2}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{2} y^{2} z^{2}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=y^{2} z^{2}$$$ and $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}{\int{x^{2} y^{2} z^{2} d x}}} = {\color{red}{y^{2} z^{2} \int{x^{2} d x}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$y^{2} z^{2} {\color{red}{\int{x^{2} d x}}}=y^{2} z^{2} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=y^{2} z^{2} {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Therefore,
$$\int{x^{2} y^{2} z^{2} d x} = \frac{x^{3} y^{2} z^{2}}{3}$$
Add the constant of integration:
$$\int{x^{2} y^{2} z^{2} d x} = \frac{x^{3} y^{2} z^{2}}{3}+C$$
Answer
$$$\int x^{2} y^{2} z^{2}\, dx = \frac{x^{3} y^{2} z^{2}}{3} + C$$$A