Integral of $$$2 x^{3} \sqrt{x^{5}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 2 x^{3} \sqrt{x^{5}}\, dx$$$.
Solution
The input is rewritten: $$$\int{2 x^{3} \sqrt{x^{5}} d x}=\int{2 x^{\frac{11}{2}} d x}$$$.
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = x^{\frac{11}{2}}$$$:
$${\color{red}{\int{2 x^{\frac{11}{2}} d x}}} = {\color{red}{\left(2 \int{x^{\frac{11}{2}} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{11}{2}$$$:
$$2 {\color{red}{\int{x^{\frac{11}{2}} d x}}}=2 {\color{red}{\frac{x^{1 + \frac{11}{2}}}{1 + \frac{11}{2}}}}=2 {\color{red}{\left(\frac{2 x^{\frac{13}{2}}}{13}\right)}}$$
Therefore,
$$\int{2 x^{\frac{11}{2}} d x} = \frac{4 x^{\frac{13}{2}}}{13}$$
Add the constant of integration:
$$\int{2 x^{\frac{11}{2}} d x} = \frac{4 x^{\frac{13}{2}}}{13}+C$$
Answer
$$$\int 2 x^{3} \sqrt{x^{5}}\, dx = \frac{4 x^{\frac{13}{2}}}{13} + C$$$A