Integral of $$$\frac{1}{x^{2} + 1}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{2} + 1}\, dx$$$.
Solution
The integral of $$$\frac{1}{x^{2} + 1}$$$ is $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$${\color{red}{\int{\frac{1}{x^{2} + 1} d x}}} = {\color{red}{\operatorname{atan}{\left(x \right)}}}$$
Therefore,
$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$
Add the constant of integration:
$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}+C$$
Answer
$$$\int \frac{1}{x^{2} + 1}\, dx = \operatorname{atan}{\left(x \right)} + C$$$A
Please try a new game Rotatly