Integral of $$$c x^{3}$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int c x^{3}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=c$$$ and $$$f{\left(x \right)} = x^{3}$$$:
$${\color{red}{\int{c x^{3} d x}}} = {\color{red}{c \int{x^{3} d x}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:
$$c {\color{red}{\int{x^{3} d x}}}=c {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=c {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Therefore,
$$\int{c x^{3} d x} = \frac{c x^{4}}{4}$$
Add the constant of integration:
$$\int{c x^{3} d x} = \frac{c x^{4}}{4}+C$$
Answer
$$$\int c x^{3}\, dx = \frac{c x^{4}}{4} + C$$$A