Integral of $$$x^{2} \left(6 - x^{3}\right)^{5}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{2} \left(6 - x^{3}\right)^{5}\, dx$$$.
Solution
Let $$$u=6 - x^{3}$$$.
Then $$$du=\left(6 - x^{3}\right)^{\prime }dx = - 3 x^{2} dx$$$ (steps can be seen »), and we have that $$$x^{2} dx = - \frac{du}{3}$$$.
So,
$${\color{red}{\int{x^{2} \left(6 - x^{3}\right)^{5} d x}}} = {\color{red}{\int{\left(- \frac{u^{5}}{3}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=- \frac{1}{3}$$$ and $$$f{\left(u \right)} = u^{5}$$$:
$${\color{red}{\int{\left(- \frac{u^{5}}{3}\right)d u}}} = {\color{red}{\left(- \frac{\int{u^{5} d u}}{3}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=5$$$:
$$- \frac{{\color{red}{\int{u^{5} d u}}}}{3}=- \frac{{\color{red}{\frac{u^{1 + 5}}{1 + 5}}}}{3}=- \frac{{\color{red}{\left(\frac{u^{6}}{6}\right)}}}{3}$$
Recall that $$$u=6 - x^{3}$$$:
$$- \frac{{\color{red}{u}}^{6}}{18} = - \frac{{\color{red}{\left(6 - x^{3}\right)}}^{6}}{18}$$
Therefore,
$$\int{x^{2} \left(6 - x^{3}\right)^{5} d x} = - \frac{\left(6 - x^{3}\right)^{6}}{18}$$
Simplify:
$$\int{x^{2} \left(6 - x^{3}\right)^{5} d x} = - \frac{\left(x^{3} - 6\right)^{6}}{18}$$
Add the constant of integration:
$$\int{x^{2} \left(6 - x^{3}\right)^{5} d x} = - \frac{\left(x^{3} - 6\right)^{6}}{18}+C$$
Answer
$$$\int x^{2} \left(6 - x^{3}\right)^{5}\, dx = - \frac{\left(x^{3} - 6\right)^{6}}{18} + C$$$A