Integral of $$$x^{2} \sqrt{x^{3}}$$$

The calculator will find the integral/antiderivative of $$$x^{2} \sqrt{x^{3}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int x^{2} \sqrt{x^{3}}\, dx$$$.

Solution

The input is rewritten: $$$\int{x^{2} \sqrt{x^{3}} d x}=\int{x^{\frac{7}{2}} d x}$$$.

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{7}{2}$$$:

$${\color{red}{\int{x^{\frac{7}{2}} d x}}}={\color{red}{\frac{x^{1 + \frac{7}{2}}}{1 + \frac{7}{2}}}}={\color{red}{\left(\frac{2 x^{\frac{9}{2}}}{9}\right)}}$$

Therefore,

$$\int{x^{\frac{7}{2}} d x} = \frac{2 x^{\frac{9}{2}}}{9}$$

Add the constant of integration:

$$\int{x^{\frac{7}{2}} d x} = \frac{2 x^{\frac{9}{2}}}{9}+C$$

Answer

$$$\int x^{2} \sqrt{x^{3}}\, dx = \frac{2 x^{\frac{9}{2}}}{9} + C$$$A


Please try a new game Rotatly