Integral of $$$v^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int v^{2}\, dv$$$.
Solution
Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$${\color{red}{\int{v^{2} d v}}}={\color{red}{\frac{v^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{v^{3}}{3}\right)}}$$
Therefore,
$$\int{v^{2} d v} = \frac{v^{3}}{3}$$
Add the constant of integration:
$$\int{v^{2} d v} = \frac{v^{3}}{3}+C$$
Answer
$$$\int v^{2}\, dv = \frac{v^{3}}{3} + C$$$A
Please try a new game Rotatly