Integral of $$$\frac{\ln^{5}\left(u^{2}\right)}{u}$$$

The calculator will find the integral/antiderivative of $$$\frac{\ln^{5}\left(u^{2}\right)}{u}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\ln^{5}\left(u^{2}\right)}{u}\, du$$$.

Solution

The input is rewritten: $$$\int{\frac{\ln{\left(u^{2} \right)}^{5}}{u} d u}=\int{\frac{32 \ln{\left(u \right)}^{5}}{u} d u}$$$.

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=32$$$ and $$$f{\left(u \right)} = \frac{\ln{\left(u \right)}^{5}}{u}$$$:

$${\color{red}{\int{\frac{32 \ln{\left(u \right)}^{5}}{u} d u}}} = {\color{red}{\left(32 \int{\frac{\ln{\left(u \right)}^{5}}{u} d u}\right)}}$$

Let $$$v=\ln{\left(u \right)}$$$.

Then $$$dv=\left(\ln{\left(u \right)}\right)^{\prime }du = \frac{du}{u}$$$ (steps can be seen »), and we have that $$$\frac{du}{u} = dv$$$.

Therefore,

$$32 {\color{red}{\int{\frac{\ln{\left(u \right)}^{5}}{u} d u}}} = 32 {\color{red}{\int{v^{5} d v}}}$$

Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=5$$$:

$$32 {\color{red}{\int{v^{5} d v}}}=32 {\color{red}{\frac{v^{1 + 5}}{1 + 5}}}=32 {\color{red}{\left(\frac{v^{6}}{6}\right)}}$$

Recall that $$$v=\ln{\left(u \right)}$$$:

$$\frac{16 {\color{red}{v}}^{6}}{3} = \frac{16 {\color{red}{\ln{\left(u \right)}}}^{6}}{3}$$

Therefore,

$$\int{\frac{32 \ln{\left(u \right)}^{5}}{u} d u} = \frac{16 \ln{\left(u \right)}^{6}}{3}$$

Add the constant of integration:

$$\int{\frac{32 \ln{\left(u \right)}^{5}}{u} d u} = \frac{16 \ln{\left(u \right)}^{6}}{3}+C$$

Answer

$$$\int \frac{\ln^{5}\left(u^{2}\right)}{u}\, du = \frac{16 \ln^{6}\left(u\right)}{3} + C$$$A


Please try a new game Rotatly