Integral of $$$x e^{2} e^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x e^{2} e^{x}\, dx$$$.
Solution
The input is rewritten: $$$\int{x e^{2} e^{x} d x}=\int{x e^{x + 2} d x}$$$.
For the integral $$$\int{x e^{x + 2} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{x + 2} dx$$$.
Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x + 2} d x}=e^{x + 2}$$$ (steps can be seen »).
The integral can be rewritten as
$${\color{red}{\int{x e^{x + 2} d x}}}={\color{red}{\left(x \cdot e^{x + 2}-\int{e^{x + 2} \cdot 1 d x}\right)}}={\color{red}{\left(x e^{x + 2} - \int{e^{x + 2} d x}\right)}}$$
Let $$$u=x + 2$$$.
Then $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Therefore,
$$x e^{x + 2} - {\color{red}{\int{e^{x + 2} d x}}} = x e^{x + 2} - {\color{red}{\int{e^{u} d u}}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$x e^{x + 2} - {\color{red}{\int{e^{u} d u}}} = x e^{x + 2} - {\color{red}{e^{u}}}$$
Recall that $$$u=x + 2$$$:
$$x e^{x + 2} - e^{{\color{red}{u}}} = x e^{x + 2} - e^{{\color{red}{\left(x + 2\right)}}}$$
Therefore,
$$\int{x e^{x + 2} d x} = x e^{x + 2} - e^{x + 2}$$
Simplify:
$$\int{x e^{x + 2} d x} = \left(x - 1\right) e^{x + 2}$$
Add the constant of integration:
$$\int{x e^{x + 2} d x} = \left(x - 1\right) e^{x + 2}+C$$
Answer
$$$\int x e^{2} e^{x}\, dx = \left(x - 1\right) e^{x + 2} + C$$$A