Integral of $$$e^{- a^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{- a^{2}}\, da$$$.
Solution
This integral (Error Function) does not have a closed form:
$${\color{red}{\int{e^{- a^{2}} d a}}} = {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(a \right)}}{2}\right)}}$$
Therefore,
$$\int{e^{- a^{2}} d a} = \frac{\sqrt{\pi} \operatorname{erf}{\left(a \right)}}{2}$$
Add the constant of integration:
$$\int{e^{- a^{2}} d a} = \frac{\sqrt{\pi} \operatorname{erf}{\left(a \right)}}{2}+C$$
Answer
$$$\int e^{- a^{2}}\, da = \frac{\sqrt{\pi} \operatorname{erf}{\left(a \right)}}{2} + C$$$A
Please try a new game Rotatly