Integral of $$$\frac{1}{54 \sin{\left(x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{54 \sin{\left(x \right)}}\, dx$$$.
Solution
Rewrite the sine using the double angle formula $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:
$${\color{red}{\int{\frac{1}{54 \sin{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{108 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
Multiply the numerator and denominator by $$$\sec^2\left(\frac{x}{2} \right)$$$:
$${\color{red}{\int{\frac{1}{108 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{108 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
Let $$$u=\tan{\left(\frac{x}{2} \right)}$$$.
Then $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.
Thus,
$${\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{108 \tan{\left(\frac{x}{2} \right)}} d x}}} = {\color{red}{\int{\frac{1}{54 u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{54}$$$ and $$$f{\left(u \right)} = \frac{1}{u}$$$:
$${\color{red}{\int{\frac{1}{54 u} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{54}\right)}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{u} d u}}}}{54} = \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{54}$$
Recall that $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{54} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)}}{54}$$
Therefore,
$$\int{\frac{1}{54 \sin{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}}{54}$$
Add the constant of integration:
$$\int{\frac{1}{54 \sin{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}}{54}+C$$
Answer
$$$\int \frac{1}{54 \sin{\left(x \right)}}\, dx = \frac{\ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right)}{54} + C$$$A