Integral of $$$\cot{\left(c \right)}$$$

The calculator will find the integral/antiderivative of $$$\cot{\left(c \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \cot{\left(c \right)}\, dc$$$.

Solution

Rewrite the cotangent as $$$\cot\left(c\right)=\frac{\cos\left(c\right)}{\sin\left(c\right)}$$$:

$${\color{red}{\int{\cot{\left(c \right)} d c}}} = {\color{red}{\int{\frac{\cos{\left(c \right)}}{\sin{\left(c \right)}} d c}}}$$

Let $$$u=\sin{\left(c \right)}$$$.

Then $$$du=\left(\sin{\left(c \right)}\right)^{\prime }dc = \cos{\left(c \right)} dc$$$ (steps can be seen »), and we have that $$$\cos{\left(c \right)} dc = du$$$.

Therefore,

$${\color{red}{\int{\frac{\cos{\left(c \right)}}{\sin{\left(c \right)}} d c}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recall that $$$u=\sin{\left(c \right)}$$$:

$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\sin{\left(c \right)}}}}\right| \right)}$$

Therefore,

$$\int{\cot{\left(c \right)} d c} = \ln{\left(\left|{\sin{\left(c \right)}}\right| \right)}$$

Add the constant of integration:

$$\int{\cot{\left(c \right)} d c} = \ln{\left(\left|{\sin{\left(c \right)}}\right| \right)}+C$$

Answer

$$$\int \cot{\left(c \right)}\, dc = \ln\left(\left|{\sin{\left(c \right)}}\right|\right) + C$$$A


Please try a new game Rotatly