Integral of $$$- a + \frac{1}{x}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$- a + \frac{1}{x}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- a + \frac{1}{x}\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(- a + \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{a d x} + \int{\frac{1}{x} d x}\right)}}$$

The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$- \int{a d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{a d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=a$$$:

$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{a d x}}} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{a x}}$$

Therefore,

$$\int{\left(- a + \frac{1}{x}\right)d x} = - a x + \ln{\left(\left|{x}\right| \right)}$$

Add the constant of integration:

$$\int{\left(- a + \frac{1}{x}\right)d x} = - a x + \ln{\left(\left|{x}\right| \right)}+C$$

Answer

$$$\int \left(- a + \frac{1}{x}\right)\, dx = \left(- a x + \ln\left(\left|{x}\right|\right)\right) + C$$$A


Please try a new game Rotatly