$$$- a + \frac{1}{x}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \left(- a + \frac{1}{x}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(- a + \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{a d x} + \int{\frac{1}{x} d x}\right)}}$$
$$$\frac{1}{x}$$$ 的积分为 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \int{a d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{a d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=a$$$:
$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{a d x}}} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{a x}}$$
因此,
$$\int{\left(- a + \frac{1}{x}\right)d x} = - a x + \ln{\left(\left|{x}\right| \right)}$$
加上积分常数:
$$\int{\left(- a + \frac{1}{x}\right)d x} = - a x + \ln{\left(\left|{x}\right| \right)}+C$$
答案
$$$\int \left(- a + \frac{1}{x}\right)\, dx = \left(- a x + \ln\left(\left|{x}\right|\right)\right) + C$$$A