Integralen av $$$- a + \frac{1}{x}$$$ med avseende på $$$x$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- a + \frac{1}{x}\right)\, dx$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(- a + \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{a d x} + \int{\frac{1}{x} d x}\right)}}$$
Integralen av $$$\frac{1}{x}$$$ är $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- \int{a d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{a d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=a$$$:
$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{a d x}}} = \ln{\left(\left|{x}\right| \right)} - {\color{red}{a x}}$$
Alltså,
$$\int{\left(- a + \frac{1}{x}\right)d x} = - a x + \ln{\left(\left|{x}\right| \right)}$$
Lägg till integrationskonstanten:
$$\int{\left(- a + \frac{1}{x}\right)d x} = - a x + \ln{\left(\left|{x}\right| \right)}+C$$
Svar
$$$\int \left(- a + \frac{1}{x}\right)\, dx = \left(- a x + \ln\left(\left|{x}\right|\right)\right) + C$$$A