Integral of $$$\frac{1}{x^{5}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{5}}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-5$$$:
$${\color{red}{\int{\frac{1}{x^{5}} d x}}}={\color{red}{\int{x^{-5} d x}}}={\color{red}{\frac{x^{-5 + 1}}{-5 + 1}}}={\color{red}{\left(- \frac{x^{-4}}{4}\right)}}={\color{red}{\left(- \frac{1}{4 x^{4}}\right)}}$$
Therefore,
$$\int{\frac{1}{x^{5}} d x} = - \frac{1}{4 x^{4}}$$
Add the constant of integration:
$$\int{\frac{1}{x^{5}} d x} = - \frac{1}{4 x^{4}}+C$$
Answer
$$$\int \frac{1}{x^{5}}\, dx = - \frac{1}{4 x^{4}} + C$$$A