Integral of $$$\frac{1}{x - 3}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x - 3}\, dx$$$.
Solution
Let $$$u=x - 3$$$.
Then $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral can be rewritten as
$${\color{red}{\int{\frac{1}{x - 3} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x - 3$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{1}{x - 3} d x} = \ln{\left(\left|{x - 3}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{x - 3} d x} = \ln{\left(\left|{x - 3}\right| \right)}+C$$
Answer
$$$\int \frac{1}{x - 3}\, dx = \ln\left(\left|{x - 3}\right|\right) + C$$$A