Integral of $$$\frac{4}{\sqrt{t^{2} - 4}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{4}{\sqrt{t^{2} - 4}}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=4$$$ and $$$f{\left(t \right)} = \frac{1}{\sqrt{t^{2} - 4}}$$$:
$${\color{red}{\int{\frac{4}{\sqrt{t^{2} - 4}} d t}}} = {\color{red}{\left(4 \int{\frac{1}{\sqrt{t^{2} - 4}} d t}\right)}}$$
Let $$$t=2 \cosh{\left(u \right)}$$$.
Then $$$dt=\left(2 \cosh{\left(u \right)}\right)^{\prime }du = 2 \sinh{\left(u \right)} du$$$ (steps can be seen »).
Also, it follows that $$$u=\operatorname{acosh}{\left(\frac{t}{2} \right)}$$$.
Therefore,
$$$\frac{1}{\sqrt{t^{2} - 4}} = \frac{1}{\sqrt{4 \cosh^{2}{\left( u \right)} - 4}}$$$
Use the identity $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{4 \cosh^{2}{\left( u \right)} - 4}}=\frac{1}{2 \sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{1}{2 \sqrt{\sinh^{2}{\left( u \right)}}}$$$
Assuming that $$$\sinh{\left( u \right)} \ge 0$$$, we obtain the following:
$$$\frac{1}{2 \sqrt{\sinh^{2}{\left( u \right)}}} = \frac{1}{2 \sinh{\left( u \right)}}$$$
Integral can be rewritten as
$$4 {\color{red}{\int{\frac{1}{\sqrt{t^{2} - 4}} d t}}} = 4 {\color{red}{\int{1 d u}}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$4 {\color{red}{\int{1 d u}}} = 4 {\color{red}{u}}$$
Recall that $$$u=\operatorname{acosh}{\left(\frac{t}{2} \right)}$$$:
$$4 {\color{red}{u}} = 4 {\color{red}{\operatorname{acosh}{\left(\frac{t}{2} \right)}}}$$
Therefore,
$$\int{\frac{4}{\sqrt{t^{2} - 4}} d t} = 4 \operatorname{acosh}{\left(\frac{t}{2} \right)}$$
Add the constant of integration:
$$\int{\frac{4}{\sqrt{t^{2} - 4}} d t} = 4 \operatorname{acosh}{\left(\frac{t}{2} \right)}+C$$
Answer
$$$\int \frac{4}{\sqrt{t^{2} - 4}}\, dt = 4 \operatorname{acosh}{\left(\frac{t}{2} \right)} + C$$$A