$$$\frac{4}{\sqrt{t^{2} - 4}}$$$ 的积分
您的输入
求$$$\int \frac{4}{\sqrt{t^{2} - 4}}\, dt$$$。
解答
对 $$$c=4$$$ 和 $$$f{\left(t \right)} = \frac{1}{\sqrt{t^{2} - 4}}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$${\color{red}{\int{\frac{4}{\sqrt{t^{2} - 4}} d t}}} = {\color{red}{\left(4 \int{\frac{1}{\sqrt{t^{2} - 4}} d t}\right)}}$$
设$$$t=2 \cosh{\left(u \right)}$$$。
则$$$dt=\left(2 \cosh{\left(u \right)}\right)^{\prime }du = 2 \sinh{\left(u \right)} du$$$(步骤见»)。
此外,可得$$$u=\operatorname{acosh}{\left(\frac{t}{2} \right)}$$$。
因此,
$$$\frac{1}{\sqrt{t^{2} - 4}} = \frac{1}{\sqrt{4 \cosh^{2}{\left( u \right)} - 4}}$$$
利用恒等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{4 \cosh^{2}{\left( u \right)} - 4}}=\frac{1}{2 \sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{1}{2 \sqrt{\sinh^{2}{\left( u \right)}}}$$$
假设$$$\sinh{\left( u \right)} \ge 0$$$,我们得到如下结果:
$$$\frac{1}{2 \sqrt{\sinh^{2}{\left( u \right)}}} = \frac{1}{2 \sinh{\left( u \right)}}$$$
积分变为
$$4 {\color{red}{\int{\frac{1}{\sqrt{t^{2} - 4}} d t}}} = 4 {\color{red}{\int{1 d u}}}$$
应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$:
$$4 {\color{red}{\int{1 d u}}} = 4 {\color{red}{u}}$$
回忆一下 $$$u=\operatorname{acosh}{\left(\frac{t}{2} \right)}$$$:
$$4 {\color{red}{u}} = 4 {\color{red}{\operatorname{acosh}{\left(\frac{t}{2} \right)}}}$$
因此,
$$\int{\frac{4}{\sqrt{t^{2} - 4}} d t} = 4 \operatorname{acosh}{\left(\frac{t}{2} \right)}$$
加上积分常数:
$$\int{\frac{4}{\sqrt{t^{2} - 4}} d t} = 4 \operatorname{acosh}{\left(\frac{t}{2} \right)}+C$$
答案
$$$\int \frac{4}{\sqrt{t^{2} - 4}}\, dt = 4 \operatorname{acosh}{\left(\frac{t}{2} \right)} + C$$$A