Integral of $$$\frac{3}{\left(2 - x\right)^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{3}{\left(2 - x\right)^{2}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=3$$$ and $$$f{\left(x \right)} = \frac{1}{\left(2 - x\right)^{2}}$$$:
$${\color{red}{\int{\frac{3}{\left(2 - x\right)^{2}} d x}}} = {\color{red}{\left(3 \int{\frac{1}{\left(2 - x\right)^{2}} d x}\right)}}$$
Let $$$u=2 - x$$$.
Then $$$du=\left(2 - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
Thus,
$$3 {\color{red}{\int{\frac{1}{\left(2 - x\right)^{2}} d x}}} = 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$:
$$3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = 3 {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$- 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- 3 {\color{red}{\int{u^{-2} d u}}}=- 3 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- 3 {\color{red}{\left(- u^{-1}\right)}}=- 3 {\color{red}{\left(- \frac{1}{u}\right)}}$$
Recall that $$$u=2 - x$$$:
$$3 {\color{red}{u}}^{-1} = 3 {\color{red}{\left(2 - x\right)}}^{-1}$$
Therefore,
$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = \frac{3}{2 - x}$$
Simplify:
$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = - \frac{3}{x - 2}$$
Add the constant of integration:
$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = - \frac{3}{x - 2}+C$$
Answer
$$$\int \frac{3}{\left(2 - x\right)^{2}}\, dx = - \frac{3}{x - 2} + C$$$A