$$$\frac{3}{\left(2 - x\right)^{2}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{3}{\left(2 - x\right)^{2}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{3}{\left(2 - x\right)^{2}}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=3$$$ ve $$$f{\left(x \right)} = \frac{1}{\left(2 - x\right)^{2}}$$$ ile uygula:

$${\color{red}{\int{\frac{3}{\left(2 - x\right)^{2}} d x}}} = {\color{red}{\left(3 \int{\frac{1}{\left(2 - x\right)^{2}} d x}\right)}}$$

$$$u=2 - x$$$ olsun.

Böylece $$$du=\left(2 - x\right)^{\prime }dx = - dx$$$ (adımlar » görülebilir) ve $$$dx = - du$$$ elde ederiz.

Dolayısıyla,

$$3 {\color{red}{\int{\frac{1}{\left(2 - x\right)^{2}} d x}}} = 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=-1$$$ ve $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ ile uygula:

$$3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = 3 {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$

Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-2$$$ ile uygulayın:

$$- 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- 3 {\color{red}{\int{u^{-2} d u}}}=- 3 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- 3 {\color{red}{\left(- u^{-1}\right)}}=- 3 {\color{red}{\left(- \frac{1}{u}\right)}}$$

Hatırlayın ki $$$u=2 - x$$$:

$$3 {\color{red}{u}}^{-1} = 3 {\color{red}{\left(2 - x\right)}}^{-1}$$

Dolayısıyla,

$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = \frac{3}{2 - x}$$

Sadeleştirin:

$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = - \frac{3}{x - 2}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = - \frac{3}{x - 2}+C$$

Cevap

$$$\int \frac{3}{\left(2 - x\right)^{2}}\, dx = - \frac{3}{x - 2} + C$$$A


Please try a new game Rotatly