$$$\frac{3}{\left(2 - x\right)^{2}}$$$ 的积分
您的输入
求$$$\int \frac{3}{\left(2 - x\right)^{2}}\, dx$$$。
解答
对 $$$c=3$$$ 和 $$$f{\left(x \right)} = \frac{1}{\left(2 - x\right)^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{3}{\left(2 - x\right)^{2}} d x}}} = {\color{red}{\left(3 \int{\frac{1}{\left(2 - x\right)^{2}} d x}\right)}}$$
设$$$u=2 - x$$$。
则$$$du=\left(2 - x\right)^{\prime }dx = - dx$$$ (步骤见»),并有$$$dx = - du$$$。
该积分可以改写为
$$3 {\color{red}{\int{\frac{1}{\left(2 - x\right)^{2}} d x}}} = 3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}}$$
对 $$$c=-1$$$ 和 $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$3 {\color{red}{\int{\left(- \frac{1}{u^{2}}\right)d u}}} = 3 {\color{red}{\left(- \int{\frac{1}{u^{2}} d u}\right)}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-2$$$:
$$- 3 {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- 3 {\color{red}{\int{u^{-2} d u}}}=- 3 {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- 3 {\color{red}{\left(- u^{-1}\right)}}=- 3 {\color{red}{\left(- \frac{1}{u}\right)}}$$
回忆一下 $$$u=2 - x$$$:
$$3 {\color{red}{u}}^{-1} = 3 {\color{red}{\left(2 - x\right)}}^{-1}$$
因此,
$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = \frac{3}{2 - x}$$
化简:
$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = - \frac{3}{x - 2}$$
加上积分常数:
$$\int{\frac{3}{\left(2 - x\right)^{2}} d x} = - \frac{3}{x - 2}+C$$
答案
$$$\int \frac{3}{\left(2 - x\right)^{2}}\, dx = - \frac{3}{x - 2} + C$$$A