Integral of $$$\frac{_0 x}{10}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{_0 x}{10}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{_0 x}{10}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{_0}{10}$$$ and $$$f{\left(x \right)} = x$$$:

$${\color{red}{\int{\frac{_0 x}{10} d x}}} = {\color{red}{\left(\frac{_0 \int{x d x}}{10}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$\frac{_0 {\color{red}{\int{x d x}}}}{10}=\frac{_0 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{10}=\frac{_0 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{10}$$

Therefore,

$$\int{\frac{_0 x}{10} d x} = \frac{_0 x^{2}}{20}$$

Add the constant of integration:

$$\int{\frac{_0 x}{10} d x} = \frac{_0 x^{2}}{20}+C$$

Answer

$$$\int \frac{_0 x}{10}\, dx = \frac{_0 x^{2}}{20} + C$$$A


Please try a new game Rotatly