$$$\frac{_0 x}{10}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{_0 x}{10}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{_0}{10}$$$ 與 $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{\frac{_0 x}{10} d x}}} = {\color{red}{\left(\frac{_0 \int{x d x}}{10}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$:
$$\frac{_0 {\color{red}{\int{x d x}}}}{10}=\frac{_0 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{10}=\frac{_0 {\color{red}{\left(\frac{x^{2}}{2}\right)}}}{10}$$
因此,
$$\int{\frac{_0 x}{10} d x} = \frac{_0 x^{2}}{20}$$
加上積分常數:
$$\int{\frac{_0 x}{10} d x} = \frac{_0 x^{2}}{20}+C$$
答案
$$$\int \frac{_0 x}{10}\, dx = \frac{_0 x^{2}}{20} + C$$$A
Please try a new game Rotatly