Integral of $$$_1 x^{3} - 1$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(_1 x^{3} - 1\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(_1 x^{3} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{_1 x^{3} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$\int{_1 x^{3} d x} - {\color{red}{\int{1 d x}}} = \int{_1 x^{3} d x} - {\color{red}{x}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=_1$$$ and $$$f{\left(x \right)} = x^{3}$$$:
$$- x + {\color{red}{\int{_1 x^{3} d x}}} = - x + {\color{red}{_1 \int{x^{3} d x}}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:
$$_1 {\color{red}{\int{x^{3} d x}}} - x=_1 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}} - x=_1 {\color{red}{\left(\frac{x^{4}}{4}\right)}} - x$$
Therefore,
$$\int{\left(_1 x^{3} - 1\right)d x} = \frac{_1 x^{4}}{4} - x$$
Add the constant of integration:
$$\int{\left(_1 x^{3} - 1\right)d x} = \frac{_1 x^{4}}{4} - x+C$$
Answer
$$$\int \left(_1 x^{3} - 1\right)\, dx = \left(\frac{_1 x^{4}}{4} - x\right) + C$$$A