$$$_1 x^{3} - 1$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \left(_1 x^{3} - 1\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(_1 x^{3} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{_1 x^{3} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=1$$$:
$$\int{_1 x^{3} d x} - {\color{red}{\int{1 d x}}} = \int{_1 x^{3} d x} - {\color{red}{x}}$$
对 $$$c=_1$$$ 和 $$$f{\left(x \right)} = x^{3}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$- x + {\color{red}{\int{_1 x^{3} d x}}} = - x + {\color{red}{_1 \int{x^{3} d x}}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=3$$$:
$$_1 {\color{red}{\int{x^{3} d x}}} - x=_1 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}} - x=_1 {\color{red}{\left(\frac{x^{4}}{4}\right)}} - x$$
因此,
$$\int{\left(_1 x^{3} - 1\right)d x} = \frac{_1 x^{4}}{4} - x$$
加上积分常数:
$$\int{\left(_1 x^{3} - 1\right)d x} = \frac{_1 x^{4}}{4} - x+C$$
答案
$$$\int \left(_1 x^{3} - 1\right)\, dx = \left(\frac{_1 x^{4}}{4} - x\right) + C$$$A