Integral of $$$81 x^{16}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 81 x^{16}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=81$$$ and $$$f{\left(x \right)} = x^{16}$$$:
$${\color{red}{\int{81 x^{16} d x}}} = {\color{red}{\left(81 \int{x^{16} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=16$$$:
$$81 {\color{red}{\int{x^{16} d x}}}=81 {\color{red}{\frac{x^{1 + 16}}{1 + 16}}}=81 {\color{red}{\left(\frac{x^{17}}{17}\right)}}$$
Therefore,
$$\int{81 x^{16} d x} = \frac{81 x^{17}}{17}$$
Add the constant of integration:
$$\int{81 x^{16} d x} = \frac{81 x^{17}}{17}+C$$
Answer
$$$\int 81 x^{16}\, dx = \frac{81 x^{17}}{17} + C$$$A