Integral of $$$e^{5}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{5}\, de$$$.
Solution
Apply the power rule $$$\int e^{n}\, de = \frac{e^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=5$$$:
$${\color{red}{\int{e^{5} d e}}}={\color{red}{\frac{e^{1 + 5}}{1 + 5}}}={\color{red}{\left(\frac{e^{6}}{6}\right)}}$$
Therefore,
$$\int{e^{5} d e} = \frac{e^{6}}{6}$$
Add the constant of integration:
$$\int{e^{5} d e} = \frac{e^{6}}{6}+C$$
Answer
$$$\int e^{5}\, de = \frac{e^{6}}{6} + C$$$A
Please try a new game Rotatly