Derivative of $$$x^{2} - 48 x$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(x^{2} - 48 x\right)$$$.
Solution
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}\left(\frac{d}{dx} \left(x^{2} - 48 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) - \frac{d}{dx} \left(48 x\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 2$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} - \frac{d}{dx} \left(48 x\right) = {\color{red}\left(2 x\right)} - \frac{d}{dx} \left(48 x\right)$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 48$$$ and $$$f{\left(x \right)} = x$$$:
$$2 x - {\color{red}\left(\frac{d}{dx} \left(48 x\right)\right)} = 2 x - {\color{red}\left(48 \frac{d}{dx} \left(x\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 x - 48 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 x - 48 {\color{red}\left(1\right)}$$Thus, $$$\frac{d}{dx} \left(x^{2} - 48 x\right) = 2 x - 48$$$.
Answer
$$$\frac{d}{dx} \left(x^{2} - 48 x\right) = 2 x - 48$$$A