Derivative of $$$\frac{x}{\left|{a}\right|}$$$ with respect to $$$x$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(\frac{x}{\left|{a}\right|}\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = \frac{1}{\left|{a}\right|}$$$ and $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x}{\left|{a}\right|}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{\left|{a}\right|}\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\left|{a}\right|} = \frac{{\color{red}\left(1\right)}}{\left|{a}\right|}$$Thus, $$$\frac{d}{dx} \left(\frac{x}{\left|{a}\right|}\right) = \frac{1}{\left|{a}\right|}$$$.
Answer
$$$\frac{d}{dx} \left(\frac{x}{\left|{a}\right|}\right) = \frac{1}{\left|{a}\right|}$$$A