Derivative of $$$t - \sqrt{2}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dt} \left(t - \sqrt{2}\right)$$$.
Solution
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}\left(\frac{d}{dt} \left(t - \sqrt{2}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(t\right) - \frac{d}{dt} \left(\sqrt{2}\right)\right)}$$The derivative of a constant is $$$0$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\sqrt{2}\right)\right)} + \frac{d}{dt} \left(t\right) = - {\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)$$Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$${\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = {\color{red}\left(1\right)}$$Thus, $$$\frac{d}{dt} \left(t - \sqrt{2}\right) = 1$$$.
Answer
$$$\frac{d}{dt} \left(t - \sqrt{2}\right) = 1$$$A
Please try a new game Rotatly