Derivative of $$$\frac{t}{a}$$$ with respect to $$$t$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dt} \left(\frac{t}{a}\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = \frac{1}{a}$$$ and $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\frac{t}{a}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dt} \left(t\right)}{a}\right)}$$Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{{\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{a} = \frac{{\color{red}\left(1\right)}}{a}$$Thus, $$$\frac{d}{dt} \left(\frac{t}{a}\right) = \frac{1}{a}$$$.
Answer
$$$\frac{d}{dt} \left(\frac{t}{a}\right) = \frac{1}{a}$$$A