Derivative of $$$\sqrt{a} \sin{\left(u \right)}$$$ with respect to $$$u$$$

The calculator will find the derivative of $$$\sqrt{a} \sin{\left(u \right)}$$$ with respect to $$$u$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{du} \left(\sqrt{a} \sin{\left(u \right)}\right)$$$.

Solution

Apply the constant multiple rule $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ with $$$c = \sqrt{a}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sqrt{a} \sin{\left(u \right)}\right)\right)} = {\color{red}\left(\sqrt{a} \frac{d}{du} \left(\sin{\left(u \right)}\right)\right)}$$

The derivative of the sine is $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$$\sqrt{a} {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} = \sqrt{a} {\color{red}\left(\cos{\left(u \right)}\right)}$$

Thus, $$$\frac{d}{du} \left(\sqrt{a} \sin{\left(u \right)}\right) = \sqrt{a} \cos{\left(u \right)}$$$.

Answer

$$$\frac{d}{du} \left(\sqrt{a} \sin{\left(u \right)}\right) = \sqrt{a} \cos{\left(u \right)}$$$A


Please try a new game Rotatly