Derivative of $$$\frac{\sqrt{5} \cosh{\left(u \right)}}{2}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{du} \left(\frac{\sqrt{5} \cosh{\left(u \right)}}{2}\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ with $$$c = \frac{\sqrt{5}}{2}$$$ and $$$f{\left(u \right)} = \cosh{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\frac{\sqrt{5} \cosh{\left(u \right)}}{2}\right)\right)} = {\color{red}\left(\frac{\sqrt{5}}{2} \frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)}$$The derivative of the hyperbolic cosine is $$$\frac{d}{du} \left(\cosh{\left(u \right)}\right) = \sinh{\left(u \right)}$$$:
$$\frac{\sqrt{5} {\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)}}{2} = \frac{\sqrt{5} {\color{red}\left(\sinh{\left(u \right)}\right)}}{2}$$Thus, $$$\frac{d}{du} \left(\frac{\sqrt{5} \cosh{\left(u \right)}}{2}\right) = \frac{\sqrt{5} \sinh{\left(u \right)}}{2}$$$.
Answer
$$$\frac{d}{du} \left(\frac{\sqrt{5} \cosh{\left(u \right)}}{2}\right) = \frac{\sqrt{5} \sinh{\left(u \right)}}{2}$$$A