Derivative of $$$\sin{\left(\frac{x}{2} - 1 \right)}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right)$$$.
Solution
The function $$$\sin{\left(\frac{x}{2} - 1 \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ and $$$g{\left(x \right)} = \frac{x}{2} - 1$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2} - 1\right)\right)}$$The derivative of the sine is $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right)$$Return to the old variable:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right) = \cos{\left({\color{red}\left(\frac{x}{2} - 1\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right)$$The derivative of a sum/difference is the sum/difference of derivatives:
$$\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2} - 1\right)\right)} = \cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right) - \frac{d}{dx} \left(1\right)\right)}$$The derivative of a constant is $$$0$$$:
$$\left(- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)\right) \cos{\left(\frac{x}{2} - 1 \right)} = \left(- {\color{red}\left(0\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)\right) \cos{\left(\frac{x}{2} - 1 \right)}$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = \frac{1}{2}$$$ and $$$f{\left(x \right)} = x$$$:
$$\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = \cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(1\right)}}{2}$$Thus, $$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right) = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2}$$$.
Answer
$$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right) = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2}$$$A