Derivative of $$$\sin{\left(\ln\left(x\right) \right)}$$$

The calculator will find the derivative of $$$\sin{\left(\ln\left(x\right) \right)}$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dx} \left(\sin{\left(\ln\left(x\right) \right)}\right)$$$.

Solution

The function $$$\sin{\left(\ln\left(x\right) \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ and $$$g{\left(x \right)} = \ln\left(x\right)$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(\ln\left(x\right) \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

The derivative of the sine is $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

Return to the old variable:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = \cos{\left({\color{red}\left(\ln\left(x\right)\right)} \right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

The derivative of the natural logarithm is $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$\cos{\left(\ln\left(x\right) \right)} {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = \cos{\left(\ln\left(x\right) \right)} {\color{red}\left(\frac{1}{x}\right)}$$

Thus, $$$\frac{d}{dx} \left(\sin{\left(\ln\left(x\right) \right)}\right) = \frac{\cos{\left(\ln\left(x\right) \right)}}{x}$$$.

Answer

$$$\frac{d}{dx} \left(\sin{\left(\ln\left(x\right) \right)}\right) = \frac{\cos{\left(\ln\left(x\right) \right)}}{x}$$$A


Please try a new game Rotatly