Derivative of $$$\operatorname{sech}{\left(u \right)}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{du} \left(\operatorname{sech}{\left(u \right)}\right)$$$.
Solution
The derivative of the hyperbolic secant is $$$\frac{d}{du} \left(\operatorname{sech}{\left(u \right)}\right) = - \tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\operatorname{sech}{\left(u \right)}\right)\right)} = {\color{red}\left(- \tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}\right)}$$Thus, $$$\frac{d}{du} \left(\operatorname{sech}{\left(u \right)}\right) = - \tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}$$$.
Answer
$$$\frac{d}{du} \left(\operatorname{sech}{\left(u \right)}\right) = - \tanh{\left(u \right)} \operatorname{sech}{\left(u \right)}$$$A