Derivative of $$$\pi t$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dt} \left(\pi t\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = \pi$$$ and $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\pi t\right)\right)} = {\color{red}\left(\pi \frac{d}{dt} \left(t\right)\right)}$$Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\pi {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = \pi {\color{red}\left(1\right)}$$Thus, $$$\frac{d}{dt} \left(\pi t\right) = \pi$$$.
Answer
$$$\frac{d}{dt} \left(\pi t\right) = \pi$$$A
Please try a new game Rotatly