Derivative of $$$\frac{\pi t}{2}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dt} \left(\frac{\pi t}{2}\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = \frac{\pi}{2}$$$ and $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\frac{\pi t}{2}\right)\right)} = {\color{red}\left(\frac{\pi}{2} \frac{d}{dt} \left(t\right)\right)}$$Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{\pi {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{2} = \frac{\pi {\color{red}\left(1\right)}}{2}$$Thus, $$$\frac{d}{dt} \left(\frac{\pi t}{2}\right) = \frac{\pi}{2}$$$.
Answer
$$$\frac{d}{dt} \left(\frac{\pi t}{2}\right) = \frac{\pi}{2}$$$A