Derivative of $$$\ln\left(\frac{t}{t + 1}\right)$$$

The calculator will find the derivative of $$$\ln\left(\frac{t}{t + 1}\right)$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)$$$.

Solution

The function $$$\ln\left(\frac{t}{t + 1}\right)$$$ is the composition $$$f{\left(g{\left(t \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \ln\left(u\right)$$$ and $$$g{\left(t \right)} = \frac{t}{t + 1}$$$.

Apply the chain rule $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}$$

The derivative of the natural logarithm is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right)$$

Return to the old variable:

$$\frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(\frac{t}{t + 1}\right)}}$$

Apply the quotient rule $$$\frac{d}{dt} \left(\frac{f{\left(t \right)}}{g{\left(t \right)}}\right) = \frac{\frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} - f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)}{g^{2}{\left(t \right)}}$$$ with $$$f{\left(t \right)} = t$$$ and $$$g{\left(t \right)} = t + 1$$$:

$$\frac{\left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}}{t} = \frac{\left(t + 1\right) {\color{red}\left(\frac{\frac{d}{dt} \left(t\right) \left(t + 1\right) - t \frac{d}{dt} \left(t + 1\right)}{\left(t + 1\right)^{2}}\right)}}{t}$$

Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$\frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{t \left(t + 1\right)} = \frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(1\right)}}{t \left(t + 1\right)}$$

The derivative of a sum/difference is the sum/difference of derivatives:

$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t + 1\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(1\right)\right)} + t + 1}{t \left(t + 1\right)}$$

The derivative of a constant is $$$0$$$:

$$\frac{- t \left({\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)} = \frac{- t \left({\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)}$$

Apply the power rule $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(1\right)} + t + 1}{t \left(t + 1\right)}$$

Thus, $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$.

Answer

$$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$A


Please try a new game Rotatly