Derivative of $$$\ln\left(\sqrt{10} \sqrt{x}\right)$$$

The calculator will find the derivative of $$$\ln\left(\sqrt{10} \sqrt{x}\right)$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right)$$$.

Solution

The function $$$\ln\left(\sqrt{10} \sqrt{x}\right)$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \ln\left(u\right)$$$ and $$$g{\left(x \right)} = \sqrt{10} \sqrt{x}$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)\right)}$$

The derivative of the natural logarithm is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)$$

Return to the old variable:

$$\frac{\frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)}{{\color{red}\left(\sqrt{10} \sqrt{x}\right)}}$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = \sqrt{10}$$$ and $$$f{\left(x \right)} = \sqrt{x}$$$:

$$\frac{\sqrt{10} {\color{red}\left(\frac{d}{dx} \left(\sqrt{10} \sqrt{x}\right)\right)}}{10 \sqrt{x}} = \frac{\sqrt{10} {\color{red}\left(\sqrt{10} \frac{d}{dx} \left(\sqrt{x}\right)\right)}}{10 \sqrt{x}}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = \frac{1}{2}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)}}{\sqrt{x}} = \frac{{\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}}{\sqrt{x}}$$

Thus, $$$\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right) = \frac{1}{2 x}$$$.

Answer

$$$\frac{d}{dx} \left(\ln\left(\sqrt{10} \sqrt{x}\right)\right) = \frac{1}{2 x}$$$A


Please try a new game Rotatly