Derivative of $$$e^{- \frac{\ln\left(7\right)}{x}}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(e^{- \frac{\ln\left(7\right)}{x}}\right)$$$.
Solution
The function $$$e^{- \frac{\ln\left(7\right)}{x}}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = e^{u}$$$ and $$$g{\left(x \right)} = - \frac{\ln\left(7\right)}{x}$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{- \frac{\ln\left(7\right)}{x}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- \frac{\ln\left(7\right)}{x}\right)\right)}$$The derivative of the exponential is $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- \frac{\ln\left(7\right)}{x}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- \frac{\ln\left(7\right)}{x}\right)$$Return to the old variable:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- \frac{\ln\left(7\right)}{x}\right) = e^{{\color{red}\left(- \frac{\ln\left(7\right)}{x}\right)}} \frac{d}{dx} \left(- \frac{\ln\left(7\right)}{x}\right)$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = - \ln\left(7\right)$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$e^{- \frac{\ln\left(7\right)}{x}} {\color{red}\left(\frac{d}{dx} \left(- \frac{\ln\left(7\right)}{x}\right)\right)} = e^{- \frac{\ln\left(7\right)}{x}} {\color{red}\left(- \ln\left(7\right) \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = -1$$$:
$$- e^{- \frac{\ln\left(7\right)}{x}} \ln\left(7\right) {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} = - e^{- \frac{\ln\left(7\right)}{x}} \ln\left(7\right) {\color{red}\left(- \frac{1}{x^{2}}\right)}$$Thus, $$$\frac{d}{dx} \left(e^{- \frac{\ln\left(7\right)}{x}}\right) = \frac{e^{- \frac{\ln\left(7\right)}{x}} \ln\left(7\right)}{x^{2}}$$$.
Answer
$$$\frac{d}{dx} \left(e^{- \frac{\ln\left(7\right)}{x}}\right) = \frac{e^{- \frac{\ln\left(7\right)}{x}} \ln\left(7\right)}{x^{2}}$$$A