Derivative of $$$\cosh{\left(u \right)} \left|{a}\right|$$$ with respect to $$$u$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{du} \left(\cosh{\left(u \right)} \left|{a}\right|\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ with $$$c = \left|{a}\right|$$$ and $$$f{\left(u \right)} = \cosh{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)} \left|{a}\right|\right)\right)} = {\color{red}\left(\left|{a}\right| \frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)}$$The derivative of the hyperbolic cosine is $$$\frac{d}{du} \left(\cosh{\left(u \right)}\right) = \sinh{\left(u \right)}$$$:
$$\left|{a}\right| {\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)} = \left|{a}\right| {\color{red}\left(\sinh{\left(u \right)}\right)}$$Thus, $$$\frac{d}{du} \left(\cosh{\left(u \right)} \left|{a}\right|\right) = \sinh{\left(u \right)} \left|{a}\right|$$$.
Answer
$$$\frac{d}{du} \left(\cosh{\left(u \right)} \left|{a}\right|\right) = \sinh{\left(u \right)} \left|{a}\right|$$$A