Derivative of $$$\cos{\left(t \right)} + 1$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right)$$$.
Solution
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right) + \frac{d}{dt} \left(1\right)\right)}$$The derivative of a constant is $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(\cos{\left(t \right)}\right) = {\color{red}\left(0\right)} + \frac{d}{dt} \left(\cos{\left(t \right)}\right)$$The derivative of the cosine is $$$\frac{d}{dt} \left(\cos{\left(t \right)}\right) = - \sin{\left(t \right)}$$$:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(t \right)}\right)\right)} = {\color{red}\left(- \sin{\left(t \right)}\right)}$$Thus, $$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right) = - \sin{\left(t \right)}$$$.
Answer
$$$\frac{d}{dt} \left(\cos{\left(t \right)} + 1\right) = - \sin{\left(t \right)}$$$A
Please try a new game Rotatly