Derivative of $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$

The calculator will find the derivative of $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)$$$.

Solution

The function $$$\operatorname{atan}{\left(\sqrt{x} \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$ and $$$g{\left(x \right)} = \sqrt{x}$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) \frac{d}{dx} \left(\sqrt{x}\right)\right)}$$

The derivative of the inverse tangent is $$$\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) = \frac{1}{u^{2} + 1}$$$:

$${\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\sqrt{x}\right) = {\color{red}\left(\frac{1}{u^{2} + 1}\right)} \frac{d}{dx} \left(\sqrt{x}\right)$$

Return to the old variable:

$$\frac{\frac{d}{dx} \left(\sqrt{x}\right)}{{\color{red}\left(u\right)}^{2} + 1} = \frac{\frac{d}{dx} \left(\sqrt{x}\right)}{{\color{red}\left(\sqrt{x}\right)}^{2} + 1}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = \frac{1}{2}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)}}{x + 1} = \frac{{\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}}{x + 1}$$

Thus, $$$\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right) = \frac{1}{2 \sqrt{x} \left(x + 1\right)}$$$.

Answer

$$$\frac{d}{dx} \left(\operatorname{atan}{\left(\sqrt{x} \right)}\right) = \frac{1}{2 \sqrt{x} \left(x + 1\right)}$$$A


Please try a new game Rotatly