Derivative of $$$\operatorname{acsc}{\left(x \right)}$$$

The calculator will find the derivative of $$$\operatorname{acsc}{\left(x \right)}$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right)$$$.

Solution

The derivative of the inverse cosecant is $$$\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right) = - \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}\right)}$$

Simplify:

$$- \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}} = - \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$

Thus, $$$\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right) = - \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$.

Answer

$$$\frac{d}{dx} \left(\operatorname{acsc}{\left(x \right)}\right) = - \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$A