Derivative of $$$97 x$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(97 x\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 97$$$ and $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(97 x\right)\right)} = {\color{red}\left(97 \frac{d}{dx} \left(x\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$97 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 97 {\color{red}\left(1\right)}$$Thus, $$$\frac{d}{dx} \left(97 x\right) = 97$$$.
Answer
$$$\frac{d}{dx} \left(97 x\right) = 97$$$A
Please try a new game Rotatly