Derivative of $$$\frac{3 x}{50}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(\frac{3 x}{50}\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = \frac{3}{50}$$$ and $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{3 x}{50}\right)\right)} = {\color{red}\left(\frac{3 \frac{d}{dx} \left(x\right)}{50}\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{3 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{50} = \frac{3 {\color{red}\left(1\right)}}{50}$$Thus, $$$\frac{d}{dx} \left(\frac{3 x}{50}\right) = \frac{3}{50}$$$.
Answer
$$$\frac{d}{dx} \left(\frac{3 x}{50}\right) = \frac{3}{50}$$$A