Derivative of $$$256 x^{2} + 16$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(256 x^{2} + 16\right)$$$.
Solution
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}\left(\frac{d}{dx} \left(256 x^{2} + 16\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(256 x^{2}\right) + \frac{d}{dx} \left(16\right)\right)}$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 256$$$ and $$$f{\left(x \right)} = x^{2}$$$:
$${\color{red}\left(\frac{d}{dx} \left(256 x^{2}\right)\right)} + \frac{d}{dx} \left(16\right) = {\color{red}\left(256 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(16\right)$$The derivative of a constant is $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(16\right)\right)} + 256 \frac{d}{dx} \left(x^{2}\right) = {\color{red}\left(0\right)} + 256 \frac{d}{dx} \left(x^{2}\right)$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 2$$$:
$$256 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 256 {\color{red}\left(2 x\right)}$$Thus, $$$\frac{d}{dx} \left(256 x^{2} + 16\right) = 512 x$$$.
Answer
$$$\frac{d}{dx} \left(256 x^{2} + 16\right) = 512 x$$$A